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HOMOGENIZATION OF A NONLINEAR ELLIPTIC BOUNDARY
VALUE PROBLEM MODELING GALVANIC CURRENTS∗

Y. S. BHAT† AND S. MOSKOW†

Abstract. We study a nonlinear elliptic boundary value problem arising from electrochemistry
in the study of heterogeneous electrode surfaces. The boundary condition is of exponential type
(Butler–Volmer) and has a periodic structure. We find a limiting or effective problem as the period
approaches zero, along with a first order correction. We establish convergence estimates and provide
numerical experiments.

Key words. galvanic corrosion, homogenization, nonlinear elliptic boundary value problem,
Butler–Volmer boundary condition

AMS subject classifications. 35J65, 35Q72

DOI. 10.1137/050637042

1. Introduction. In the electrochemistry community there is much interest in
the study of galvanic interactions on heterogeneous surfaces [9], [10]. When two
different metals in electrical contact, referred to as anode and cathode, are immersed in
an electrolytic solution, the difference in rest potential generates an electron flow. This
electron flow is called a galvanic current and may lead to a deterioration (corrosion)
of the anode.

In Figure 1.1 a strip of silver (Ag) and a strip of zinc (Zn) have been immersed
in a saltwater solution. The zinc strip gives up electrons to the silver strip. The
silver strip is said to be cathodic, and reduction takes place (Ag gains electrons).
Simultaneously oxidation takes place at the zinc strip; zinc loses electrons and is said
to be anodic. Zinc dissolves into the solution, the zinc electrode is being corroded,
and the electron flow is known as galvanic current. The driving force of the electron
transport process is the difference in potential of the two metals involved. See [12] for
a complete introduction to the subject.

Here we study the electrostatic problem on a surface where anodes are arranged
periodically in a cathodic matrix. Mathematically the potential is modeled as a
function, φ, over a Euclidean domain Ω. Part of the boundary of Ω is electrochemically
active while the rest of the boundary is inert. It is the active region of the boundary
that is made up of anodic and cathodic portions. The potential over both of these
regions satisfies an exponential boundary condition of Butler and Volmer but with
different material parameters on each portion. In [9] the authors study such a problem
numerically, using finite elements. Additionally various interesting aspects of the
two dimensional, homogeneous model with the Butler–Volmer condition have been
analyzed in [3], [6], and [15]. To the best of our knowledge, however, studies coming
from the applied mathematics community have been restricted to two dimensions.
The main reason for this is that one can bound exponentials of the two dimensional
weak solution on the boundary by using an Orlicz estimate [14], [15]. Such an estimate
would require more than H1 regularity in higher dimensions. In this paper, we attempt
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Fig. 1.1. Zinc loses electrons to silver.

to treat a periodically heterogeneous problem, in two and three dimensions, from the
point of view of homogenization theory.

The three dimensional model is as follows. The domain Ω is of cylindrical shape
with its base being some two dimensional domain. The bottom base is assumed
to contain a periodic arrangement of islands (anodes). We call this collection of
islands ∂ΩA and the remainder of the bottom of the base ∂ΩC (cathodic plane).
The electrolytic voltage potential, φ, satisfies the nonlinear elliptic boundary value
problem

Δφ = 0 in Ω,

−∂φ

∂n
= JA[eαaa(φ−VA) − e−αac(φ−VA)] on ∂ΩA,(1.1)

−∂φ

∂n
= JC [eαca(φ−VC) − e−αcc(φ−VC)] on ∂ΩC ,

−∂φ

∂n
= 0 on ∂Ω \ {∂ΩA ∪ ∂ΩC},

where αaa, αac, αca, αcc are the transfer coefficients and it is assumed that the sums
(αaa + αac) and (αca + αcc) are equal to one. The positive constants JA, JC are the
anodic and cathodic polarization parameters and VA, VC are the anodic and cathodic
rest potentials, respectively. Note that ∇φ represents galvanic current. These bound-
ary conditions are the so-called Butler–Volmer exponential boundary conditions.

In the numerical studies of [9], the authors observed that for fixed ratios of anodic
to cathodic areas on the bottom base, the resulting current increased approximately
linearly with the length of the perimeter between the two regions, and they hypoth-
esized that it is the ratio of anodic area to perimeter that determines the size of the
resulting current.

As a special case of increasing perimeter with approximately fixed area fraction,
we consider a periodic structure with period approaching zero. Our goal is to expand
the solution asymptotically with respect to the period size. Convergence results in-
volving these approximations could provide insight into the behavior of the current for
small period size and possibly lead to techniques for computing approximate solutions
to (1.1).

We model the periodic structure by letting

f(y, v) = λ(y)[eα(y)(v−V (y)) − e−(1−α(y))(v−V (y))]
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Fig. 1.2. The base is a heterogeneous surface.

Fig. 1.3. Perimeter increases while anodic area fraction stays constant.

for any v ∈ R and y ∈ Y , the boundary period cell, which for simplicity we take to
be the unit square; Y = [0, 1] × [0, 1]. Here λ, α, and V are all piecewise smooth Y -
periodic functions. We also assume there exist constants λ0,Λ0, α0, A0, and V0 such
that

0 < λ0 ≤ λ(y) ≤ Λ0,(1.2)

0 < α0 ≤ α(y) ≤ A0 < 1,(1.3)

and

|V (y)| ≤ V0.(1.4)

See [3] and [15] for an analysis of when λ < 0.
Consider the problem

Δuε = 0 in Ω,

−∂uε

∂n
= f

(x
ε
, uε

)
on Γ,(1.5)

−∂uε

∂n
= 0 on ∂Ω \ Γ.

As is typical in homogenization problems, one expects that as ε → 0, the solutions
will converge in some sense to a solution of a problem with an averaged boundary
condition. Define f0(v) to be a cell average of f(y, v), that is,

f0(v) =

∫
Y

f(y, v)dy.

Consider the candidate for the homogenized problem

Δu0 = 0 in Ω,

−∂u0

∂n
= f0(u0) on Γ,(1.6)

−∂u0

∂n
= 0 on ∂Ω \ Γ.
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Remark. If, as is the case in [9], Y = Y1

⋃
Y2 and the functions λ, α, V are

piecewise constant, each taking on the values λi, αi, Vi, respectively, in Yi, then

f0(v) = |Y1|λ1

[
eα1(v−V1) − e−(1−α1)(v−V1)

]
+ |Y2|λ2

[
eα2(v−V2) − e−(1−α2)(v−V2)

]
.

That is, the above homogenized boundary condition would depend on the volume
fraction of anodic to cathodic regions.

The paper is organized as follows. In section 2, we show the existence and unique-
ness of weak solutions to (1.5) and (1.6) in any dimension and discuss regularity. In
section 3, we introduce a correction term. This correction term satisfies a heteroge-
neous boundary condition but is linear. For dimension n = 2, we prove convergence
estimates for our approximation. For n = 3, we show a partial result; the same
convergence estimates hold if one has a priori knowledge that the solutions to (1.5)
are continuous and uniformly bounded. In section 4, we test the accuracy of our
approximation with numerical experiments.

2. Existence and uniqueness. In this section we show that the energy min-
imization forms of the nonlinear problem (1.5) and (1.6) have unique solutions in
H1(Ω) in any dimension. Some elements of the proof are similar to those in [6] and
[15]. For a given ε, define the energy functional

Eε(v) =
1

2

∫
Ω

|∇v|2 dx +

∫
Γ

F
(x
ε
, v
)
dσx,(2.1)

where

F (y, v) =
λ(y)

α(y)
eα(y)(v−V (y)) +

λ(y)

1 − α(y)
e−(1−α(y))(v−V (y)).

We show the existence and uniqueness of a minimizer of (2.1). Formally, we show the
existence of a function uε ∈ H1(Ω) such that

Eε(uε) = min
u∈H1(Ω)

Eε(u).(2.2)

Note that Eε is not necessarily bounded on all of H1(Ω) (unless n = 2 for which we
can use an Orlicz estimate). However, this does not pose a problem. We set Eε equal
to (2.1), where it is well defined, and to +∞, where it is not, as in [4, p. 444]. In the
two dimensional case of the model, due to the boundedness of Eε on H1(Ω), direct
calculation shows uε satisfies the variational form of (1.5),∫

Ω

∇uε · ∇v dx = −
∫

Γ

f(x/ε, uε)v dσx for any v ∈ H1(Ω).(2.3)

In the three dimensional case, if uε is an energy minimizer, we will have that∫
Γ

F (x/ε, uε) dσx < ∞,(2.4)

and hence by the positivity of each term of F (x/ε, uε), we have that each term is
separately in L1(Ω). Therefore,

Eε(uε + tv) < ∞(2.5)
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for any t ∈ R and for any v which is smooth on Γ. Standard arguments then show
that uε satisfies∫

Ω

∇uε · ∇v dx = −
∫

Γ

f(x/ε, uε)v dσx for any v ∈ C∞(Ω̄).

Additionally, if we know that uε ∈ C0(Ω̄), then f(x/ε, uε) is bounded and hence
clearly in H−1/2(Γ). So by the density of C∞(Ω̄) functions in H1(Ω), uε in this case
would satisfy∫

Ω

∇uε · ∇v dx = −
∫

Γ

f(x/ε, uε)v dσx for any v ∈ H1(Ω).(2.6)

Consider also the functional

E0(v) =
1

2

∫
Ω

|∇v|2 dx +

∫
Γ

F0(v) dσx,(2.7)

where

F0(v) =

∫
Y

F (y, v)dy.

Here again the energy E0 is not necessarily bounded, but as before we set E0 equal
to (2.7), where it is well defined, and to +∞, where it is not. Direct calculations show
that a minimizer u0 of (2.7) will satisfy∫

Ω

∇u0 · ∇v dx = −
∫

Γ

f(u0)v dσx for any v ∈ H1(Ω),(2.8)

assuming u0 is continuous (actually we will see that u0 is a constant).
Theorem 2.1 (existence and uniqueness of the minimizer). Let Eε be defined

by (2.1), where λ, α, and V satisfy (1.2)–(1.4). Then there exists a unique function
uε ∈ H1(Ω) satisfying

Eε(uε) = min
u∈H1(Ω)

Eε(u).

Proof. Note that

∂2

∂v2
F (y, v) = λ(y)α(y)eα(y)(v−V (y)) + λ(y)(1 − α(y))e−(1−α(y))(v−V (y)).

Since λ > 0, α > 0, and 1 − α > 0 we have that ∂2

∂v2F > 0. Clearly the partial
derivative is bounded below. That is, there exists a constant c0, independent of y and
v, such that

∂2

∂v2
F (y, v) ≥ c0 > 0.

Since F is smooth in the second variable, for any v, w ∈ H1(Ω) and for any y, there
exists some ξ between v + w and v − w such that

F (y, v + w) + F (y, v − w) − 2F (y, v) =
∂2

∂v2
F (y, ξ)w2,
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which from the lower bound yields

F
(x
ε
, v + w

)
+ F

(x
ε
, v − w

)
− 2F

(x
ε
, v
)
≥ c0w

2;

whence

Eε(v + w) + Eε(v − w) − 2Eε(v) ≥
∫

Ω

|∇w|2 dx + c0

∫
Γ

w2dσx

≥ c̃0‖w‖2
H1(Ω),(2.9)

where the last inequality follows by a variant of Poincairé. Now let {un
ε }∞n=1 be a

minimizing sequence, that is,

Eε(u
n
ε ) → inf

u∈H1(Ω)
Eε(u) as n → ∞.

Since all the terms of (2.1) are nonnegative, clearly

inf
u∈H1(Ω)

Eε(u) > −∞.

Note that without loss of generality we can choose the minimizing sequence so that
all terms have finite energy (since infu∈H1(Ω) Eε(u) ≤ E(0) and E(0) is bounded
independently of ε). Let

v =
un
ε + um

ε

2

and

w =
un
ε − um

ε

2
.

Then v + w = un
ε and v − w = um

ε , so (2.9) implies

Eε(v + w) + Eε(v − w) − 2Eε(v) ≥
c̃0
4
‖un

ε − um
ε ‖2

H1(Ω),

which implies

Eε(u
n
ε ) + Eε(u

m
ε ) − 2 inf

v∈H1(Ω)
Eε(v) ≥

c̃0
4
‖un

ε − um
ε ‖2

H1(Ω).

Now if we let m,n → ∞, we see that {un
ε }n is a Cauchy sequence in the Hilbert space

H1(Ω). Define uε to be its limit in H1(Ω). Then we have

un
ε → uε in H1(Ω),

which by the trace theorem implies

un
ε → uε in L2(Γ),

which implies (see [13, p. 68]) there exists a subsequence {unk
ε }k, which we label

{uk
ε }k, such that

uk
ε → uε a.e. in Γ.
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Since F is smooth in the second variable and uk
ε → uε a.e. in Γ we have that

F
(x
ε
, uε

)
= lim

k→∞
F
(x
ε
, uk

ε

)
a.e.

Now note that clearly F (xε , u
k
ε ) > 0 for any k. So, by Fatou’s lemma we have∫

Γ

F
(x
ε
, uε

)
dσx ≤ lim inf

k→∞

∫
Γ

F
(x
ε
, uk

ε

)
dσx.

Thus from this and the fact that uk
ε → uε in H1(Ω), we can conclude that

Eε(uε) ≤ lim inf
k→∞

Eε(u
k
ε )

= lim
k→∞

Eε(u
k
ε )

= inf
u∈H1(Ω)

Eε(u).

Hence,

Eε(uε) = inf
u∈H1(Ω)

Eε(u).

So we have shown the existence of a minimizer.
Suppose uε and wε are both minimizers of the energy functional, i.e.,

Eε(uε) = inf
u∈H1(Ω)

Eε(u) = Eε(wε).

Now if we let

v = (uε + wε)/2

and

w = (uε − wε)/2,

then substituting v and w into (2.9) yields

Eε(uε) + Eε(wε) − 2Eε

(
uε + wε

2

)
≥ c̃0

4
‖uε − wε‖2

H1(Ω).

However, this implies

c̃0
4
‖uε − wε‖2

H1(Ω) ≤ Eε(uε) + Eε(wε) − 2 inf
u∈H1(Ω)

Eε(u) = 0.

Hence uε = wε in H1(Ω). Thus we have shown the uniqueness of the minimizer.
Note that this argument can be generalized to address the n-dimensional prob-

lem, i.e., the case in which we have Ω ⊂ Rn,Γ ⊂ Rn−1 with boundary period cell
Y = [0, 1]n−1. The existence and uniqueness of a minimizer u0 of E0 follows from
the same proof.

Corollary 2.2. There exists a constant C, depending on Λ0, a0, A0, and V0 but
independent of ε, such that

‖uε‖H1(Ω) ≤ C,
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where uε is a weak solution to (1.5).
Proof. Consider the function v ≡ 0. Then

Eε(v) = Eε(0) =

∫
Γ

F
(x
ε
, 0
)
dσx ≤ M

for M independent of ε (but depending on Λ0, a0, A0, and V0). Then since uε is a
minimizer,

Eε(uε) ≤ Eε(0) ≤ M.

Since both terms in Eε are positive,

‖∇uε‖2
L2(Ω) ≤ M.

We also have that ∫
Γ

F
(x
ε
, uε

)
dσx ≤ M.

By examining the form of F (y, v), we see that there exists some constant d, depending
on Λ0, a0, and A0 but independent of ε and x, such that

d
∣∣∣uε − V

(x
ε

)∣∣∣ ≤ F
(x
ε
, uε

)
.

Hence, ∫
Γ

∣∣∣uε − V
(x
ε

)∣∣∣ dσx ≤ M

d
,

which by the boundedness of V implies that∫
Γ

|uε|dσx ≤ M̃,

where M̃ is independent of ε. One variant of the Poincairé inequality says that there
exists Ĉ such that ∥∥∥∥uε −

∫
Γ

uεdσx

∥∥∥∥
L2(Ω)

≤ Ĉ‖∇uε‖L2(Ω).

Finally, the reverse triangle inequality yields

‖uε‖L2(Ω) ≤ Ĉ‖∇uε‖L2(Ω) + M̃,

which proves the corollary.
We conclude this section with a short discussion of the regularity of the solutions

uε and u0. For the two dimensional case of this problem, i.e., when the medium is
layered as in [6], [15] (see Figure 2.1), using embeddings of Sobolev spaces into Orlicz
spaces we can show that f(x2/ε, uε) and f0(u0) are bounded in L2(Γ) independently
of ε. The Orlicz estimate used for this two dimensional result is the following (see
[14], [15]): There exists a constant C such that for any v ∈ H1(Ω) and any real β we
have ∫

Γ

eβ|v|dx2 ≤ eCβ2(‖v‖H1(Ω)+1)(|Γ| + 1).
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Fig. 2.1. Two dimensional analogue.

Then from standard elliptic regularity theory this implies that uε and u0 are in
H3/2(Ω), with the norm bounded independently of ε. By the trace theorem we then
obtain bounds for uε and u0 in H1(Γ). Since Γ is one dimensional it follows that uε

and u0 are continuous on Γ and bounded pointwise, and their tangential derivatives
are bounded in L2(Γ). For the homogenized solution we have much more regularity;
u0 is in fact the constant that satisfies f0(u0) = 0. For nonzero boundary conditions
on the inactive region, u0 would still be a smooth bounded function. So for the two
dimensional version of this problem we have the following lemma.

Lemma 2.3. If Ω ⊂ R2 is a rectangle and Γ is an edge, then uε ∈ C(Ω̄), where
uε is a weak solution of (1.5). Furthermore, there exists a constant D, the value of
which does not depend on ε, such that

‖uε(x)‖C(Ω̄) ≤ D.

3. Convergence estimates and corrections. To show uε converges to u0

we will add a correction term and prove estimates in terms of powers of ε. The
convergence of uε to u0 when n = 2 will then easily follow from this. We will see that
the convergence is strong in H1(Ω) and of the order of

√
ε. The same estimate holds

when n = 3 if we know that the solutions are continuous and uniformly bounded.
Let u0 be a minimizer of (2.7) and define the correction u(1)

ε to satisfy

Δu(1)

ε = 0 in Ω,

−∂u(1)
ε

∂n
=

1

ε

(
f
(x
ε
, u0

)
− f0(u0)

)
+ eε on Γ,(3.1)

−∂u(1)
ε

∂n
= 0 on ∂Ω \ Γ,∫

Γ

u(1)

ε dσx = 0,(3.2)

where

eε =
1

ε

∫
Γ

(
f0(u0) − f

(x
ε
, u0

))
dσx.
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Hence eε is chosen such that the solution always exists, and the condition (3.2) guar-
antees this solution is unique. We note that given u0, this is a linear problem. Now
if uε and u0 are in L∞(Γ), let

Dε = max
{
‖uε‖L∞(Γ), ‖u0‖L∞(Γ)

}
(3.3)

and let

Mε = sup
(y,w)∈Y ×[−Dε,Dε]

∂f

∂v
(y, w).(3.4)

The next estimate holds for dimension n = 2 or 3 but depends on the constant Mε.
We do not know a priori that Dε is finite in general when n = 3. However, such an
assumption seems to be physically reasonable and known to be the case when the
medium is layered.

Proposition 3.1. Let n = 2 or 3 and let uε, u0 be minimizers of (2.1), (2.7),
respectively, and let u(1)

ε be the solution to (3.1). Assume also that uε ∈ C0(Ω̄). Then
there exists constants C and D independent of ε such that

‖uε − u0 − εu(1)

ε ‖H1(Ω) ≤ Cε(Mε + D),

where Mε is defined by (3.4). Furthermore, there exist constants C1 and C2 indepen-
dent of ε such that

‖u(1)

ε ‖L2(Γ) ≤ C1 and |eε| ≤ C2.

Proof. Let

zε = uε − u0 − εu(1)

ε .

Since uε is continuous, by (2.6), we have that for any v ∈ H1(Ω),∫
Ω

∇zε · ∇v dx =

∫
Ω

∇uε · ∇v dx−
∫

Ω

∇u0 · ∇v dx− ε

∫
Ω

∇u(1)

ε · ∇v dx

= −
∫

Γ

f
(x
ε
, uε

)
vdσx +

∫
Γ

f
(x
ε
, u0

)
vdσx + ε

∫
Γ

eεvdσx.

So, ∫
Ω

∇zε · ∇v dx +

∫
Γ

[
f
(x
ε
, uε

)
− f

(x
ε
, u0

)]
vdσx − ε

∫
Γ

eεvdσx = 0.

Now note that u0 and uε are defined pointwise on Γ. So, by the mean value theorem,
for each fixed ε and x ∈ Γ there exists ξxε between u0(x) and uε(x) such that

f
(x
ε
, uε

)
− f

(x
ε
, u0

)
= (uε − u0)

∂f

∂v

(x
ε
, ξxε

)
.

By subtracting and adding εu(1)
ε we have

f
(x
ε
, uε

)
− f

(x
ε
, u0

)
= zε

∂f

∂v

(x
ε
, ξxε

)
+ εu(1)

ε

∂f

∂v

(x
ε
, ξxε

)
,

which, if we pick v = zε, yields∫
Ω

|∇zε|2 dx +

∫
Γ

z2
ε

∂f

∂v

(x
ε
, ξxε

)
dσx = −ε

∫
Γ

u(1)

ε

∂f

∂v

(x
ε
, ξxε

)
zεdσx + εeε

∫
Γ

zεdσx.
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Since ∂f
∂v ≥ c0, this implies

c̃0‖zε‖2
H1(Ω) ≤

∫
Ω

|∇zε|2 dx +

∫
Γ

z2
ε

∂f

∂v

(x
ε
, ξxε

)
dσx

= −ε

∫
Γ

u(1)

ε

∂f

∂v

(x
ε
, ξxε

)
zεdσx + εeε

∫
Γ

zεdσx.

So by applying Hölder’s inequality and then the trace theorem we have

c̃0‖zε‖2
H1(Ω)

≤ ε

∥∥∥∥∂f∂v
(x
ε
, ξxε

)∥∥∥∥
L∞(Γ)

‖u(1)

ε ‖L2(Γ)‖zε‖L2(Γ) + ε|eε||Γ|1/2‖zε‖L2(Γ)

≤ ε

(∥∥∥∥∂f∂v
(x
ε
, ξxε

)∥∥∥∥
L∞(Γ)

‖u(1)

ε ‖L2(Γ) + |eε||Γ|1/2
)
‖zε‖H1(Ω).

Thus, we can write

‖zε‖H1(Ω) ≤ Cε

(∥∥∥∥∂f∂v
(x
ε
, ξxε

)∥∥∥∥
L∞(Γ)

‖u(1)

ε ‖L2(Γ) + |eε|
)
.(3.5)

Now recall for any v we have∫
Y

(f(y, v) − f0(v))dy = 0,

so there exists a continuous Y -periodic function r(y, v) such that

Δyr(y, v) = f(y, v) − f0(v) ∀v ∈ R.(3.6)

So we have

eε =
1

ε

∫
Γ

(
f0(u0) − f

(x
ε
, u0

))
dσx

= −1

ε

∫
Γ

Δyr
(x
ε
, u0

)
dσx

= −
∫
∂Γ

∇yr
(x
ε
, u0

)
· ν dsx,

where the last equality is arrived at using integration by parts and the fact that the
chain rule implies ∂r

∂y (x/ε, u0) = ε ∂r∂x (x/ε, u0). Note that the differential operators ∇y

and Δy are with respect to y ∈ Y ; that is, they are surface operators. Now since u0 is
bounded pointwise on Γ and since r(y, v) is a continuously differentiable Y -periodic
function we have

eε ≤ C,(3.7)

where C is bounded independent of ε. Now we show that ‖u(1)
ε ‖L2(Γ) is similarly

bounded. Let wε ∈ H1(Ω) satisfy

Δwε = 0 in Ω,

∂wε

∂n
= u(1)

ε on Γ,(3.8)

∂wε

∂n
= 0 on ∂Ω \ Γ,∫

Γ

wε dσx = 0;
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then ∫
Γ

(u(1)

ε )2dσx =

∫
Γ

u(1)

ε

∂wε

∂n
dσx =

∫
Ω

∇u(1)

ε ∇wε dx =

∫
∂Ω

∂u(1)
ε

∂n
wεdσx,

where the last two equalities follow from integration by parts. Now, since u(1)
ε satisfies

(3.1), we have∫
∂Ω

∂u(1)
ε

∂n
wεdσx = −

∫
Γ

[
f(x/ε, u0) − f0(u0)

ε
+ eε

]
wεdσx

= −1

ε

∫
Γ

Δyr
(x
ε
, u0

)
wεdσx − eε

∫
Γ

wεdσx

= −1

ε

∫
Γ

Δyr
(x
ε
, u0

)
wεdσx,

where the second equality follows from (3.6) and the last equality holds since
∫
Γ
wεdσx

= 0. Now using the chain rule we can write

Δyr(x/ε, u0) = ε2Δxr(x/ε, u0),

where Δx is a surface Laplacian on Γ. Thus, we have∫
Γ

(u(1)

ε )2dσx = −ε

∫
Γ

Δxr
(x
ε
, u0

)
wεdσx

= ε

∫
Γ

∇xr
(x
ε
, u0

)
∇wεdσx − ε

∫
∂Γ

∂xr

∂ν
wεdsx,(3.9)

where ν is the outward unit normal to ∂Γ. Note that when n = 2, we use the last
integral to represent endpoint evaluation. So, by Hölder’s inequality,

ε

∫
Γ

∇xr
(x
ε
, u0

)
∇wεdσx − ε

∫
∂Γ

∂xr

∂ν
wεdsx ≤ ε‖∇xr‖L2(Γ)‖∇wε‖L2(Γ)

+ ε

∥∥∥∥∂xr∂ν

∥∥∥∥
L2(∂Γ)

‖wε‖L2(∂Γ).(3.10)

Then by the trace theorem we have

‖wε‖L2(∂Γ) ≤ ‖wε‖H1(Γ) ≤ ‖wε‖H3/2(Ω).(3.11)

Similarly,

‖∇wε‖L2(Γ) ≤ ‖wε‖H1(Γ) ≤ ‖wε‖H3/2(Ω).(3.12)

Then (3.9), (3.10), (3.11), and (3.12) imply

‖u(1)

ε ‖2
L2(Γ)

≤ ε

(
‖∇xr‖L2(Γ) +

∥∥∥∥∂xr∂ν

∥∥∥∥
L2(∂Γ)

)
‖wε‖H3/2(Ω).

Now since wε satisfies (3.8) we have from standard elliptic regularity theory [7]

‖wε‖H3/2(Ω) ≤ C‖u(1)

ε ‖L2(Γ),
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where C is independent of ε and so we can write

‖u(1)

ε ‖L2(Γ) ≤ Cε

(∥∥∥∇xr
(x
ε
, u0

)∥∥∥
L2(Γ)

+

∥∥∥∥∂xr(x/ε, u0)

∂ν

∥∥∥∥
L2(∂Γ)

)

= C

(∥∥∥∇yr
(x
ε
, u0

)∥∥∥
L2(Γ)

+

∥∥∥∥∂yr(x/ε, u0)

∂ν

∥∥∥∥
L2(∂Γ)

)
,

where the last equality follows from the chain rule. Consequently, since we have
that u0 is continuous on Γ and bounded pointwise and since r(y, v) is a continuously
differentiable Y -periodic function we can conclude that

‖u(1)

ε ‖L2(Γ) ≤ D,(3.13)

where D is bounded independently of ε. Then (3.5), (3.7), and (3.13) imply the main
result of the proposition:

‖zε‖H1(Ω) ≤ Cε

(∥∥∥∥∂f∂v
(x
ε
, ξxε

)∥∥∥∥
L∞(Γ)

‖u(1)

ε ‖L2(Γ) + |eε|
)

≤ C̃ε(Mε + D̃),

where Mε is defined by (3.4).
Note that in light of Lemma 2.3, we can easily establish the following corollaries.
Corollary 3.2. When n = 2, i.e., for the case in which Ω ⊂ R2,Γ ⊂ R with

boundary period cell Y = [0, 1], there exists a constant C independent of ε such that

‖uε − u0 − εu(1)

ε ‖H1(Ω) ≤ Cε.(3.14)

Corollary 3.3. When n = 2, for uε the weak solution of (1.5) and u0 the weak
solution of (1.6), there exists a constant C independent of ε such that

‖uε − u0‖H1(Ω) ≤ C
√
ε.(3.15)

Estimate (3.15) follows from the fact that

‖u(1)

ε ‖H1(Ω) ≤ C

∥∥∥∥∂u(1)
ε

∂n

∥∥∥∥
H−1/2(Γ)

≤ Cε−1/2,

where the last inequality follows by interpolating between L2(Γ) and H1(Γ) (see [8,
section 11.5]) and then using duality (as in [11]). Finally, note that estimate (3.14)
also holds for n = 3 if we know that Dε defined by (3.3) is uniformly bounded.

4. Numerical experiments. Here we will both test the accuracy of our asymp-
totic expansion and observe the behavior of the current by performing numerical ex-
periments in two dimensions. Note that for the two dimensional problem the domain
Ω is a unit square and the boundary Γ is the right side of the unit square, that is,

Γ = {(x1, x2) : x1 = 1}

(see Figure 2.1). To compute solutions uε, u0, and u(1)
ε , we use piecewise linear finite

elements on a regular mesh. To avoid singularities within elements, we choose a grid
which conforms to the medium. To perform the nonlinear minimization (when solving
for uε), we use a conjugate gradient descent based algorithm developed by Hager and
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Table 4.1

Table of estimates over Ω and convergence rates.

ε 1/5 1/11 1/25 1/40 α

‖uε − (u0 + εu
(1)
ε )‖H1(Ω) .0189 .0090 .0040 .0025 .9699 .9843 .9913

‖uε − u0‖H1(Ω) .0537 .0360 .0238 .0188 .5057 .5061 .506 0

‖uε − u0‖L2(Ω) .0063 .0027 .0011 .0007 1.0808 1.0722 1.0676

Table 4.2

Table of estimates over Γ and estimates of the gradient over Γ.

ε 1/5 1/11 1/25 1/40

‖uε − (u0 + εu
(1)
ε )‖L2(Γ) 0.0108 0.0050 0.0022 0.0014

‖uε − u0‖L2(Γ) 0.0128 0.0057 0.0025 0.0015

‖∇uε −∇(u0 + εu
(1)
ε )‖L2(Γ) 0.1027 0.0710 0.0475 0.0377

‖∇uε −∇u0‖L2(Γ) 0.1235 0.0817 0.0536 0.0422

Zhang [5]. Note that the homogenized solution u0 is simply a constant value here,
which we can find by Newton’s method. The correction, u(1)

ε , is computed using
standard finite elements for a linear problem, again conforming to the media.

We perform these computations for ε = 1/5, ε = 1/11, ε = 1/25, and ε = 1/40. We
use the following parameter values for our simulation: JA = 1, JC = 10, VA = 0.5,
VC = 1.0, αaa = 0.5, αca = 0.85, and Y = YA

⋃
YC , where YA = [0, 1/3] and

YC = [1/3, 1]. Note that for the parameter values used in this implementation, we
have u0 = 0.9758. We have shown analytically that the estimates below hold for the
case of layered media and wish to numerically verify these estimates:

‖uε − u0 − εu(1)

ε ‖H1(Ω) ≤ C1ε,

‖uε − u0‖H1(Ω) ≤ C2

√
ε.

The results are summarized in Table 4.1. The estimates above are all bounded
by a term of the form Cεα. We estimate this exponent α in Table 4.1. Note that the
numerical results in Table 4.1 are in compliance with the given estimates.

In Figures 4.1 and 4.2 we plot the “correct” and asymptotic approximation of the
potential on Ω when ε = 1/5. We see that the macroscopic behavior is captured by the
expansion. Figures 4.3 and 4.4 show the same for ε = 1/11. In Figure 4.5(a)–4.5(d) we
can view the limiting behavior of uε on Γ as ε approaches 0. To examine the influence
of the corrector term more closely, in Figures 4.6–4.9 we graph both the “correct”
solution and the asymptotic expansion over Γ with material regions indicated. Note
that the asymptotic approximation is not exact and in fact is slightly skewed. This is
probably due to the linearization of the corrector term. In Figure 4.10 we graph the
L∞-norm of ∇uε on the boundary for various values of ε. We see that according to our
simulations of the layered media case, the current remains bounded as the perimeter
becomes arbitrarily large, suggesting that the linear relation between current and
perimeter observed in [9] may not hold for all geometries. Our results, however, do
not directly contradict the observations made in [9], where the computations were
done for a fixed number of anodes with a varying geometry. Furthermore, since the
estimates here are merely in H1(Ω), pointwise estimates for the gradient (current) on
the boundary do not follow.
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Fig. 4.1. uε, ε = 1/5.

Fig. 4.2. u0 + εu
(1)
ε , ε = 1/5.
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Fig. 4.3. uε, ε = 1/11.

Fig. 4.4. u0 + εu
(1)
ε , ε = 1/11.
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Fig. 4.5. Limiting behavior of uε on Γ as ε approaches zero for (a) ε = 1/5, (b) ε = 1/11, (c)
ε = 1/25, (d) ε = 1/40.
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Fig. 4.6. The potential on the boundary Γ, ε = 1/5.

Fig. 4.7. The potential on the boundary Γ, ε = 1/11.
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Fig. 4.8. The potential on the boundary Γ, ε = 1/25.

Fig. 4.9. The potential on the boundary Γ, ε = 1/40.



20 Y. S. BHAT AND S. MOSKOW

Fig. 4.10. L∞-norm of ∇uε on Γ as ε approaches 0.

5. Conclusion. We have analyzed a Butler–Volmer-type model which describes
the potential distribution in a system of anodic islands in a coplanar cathodic matrix
with a periodic structure. By using a multiscale approach we have determined the
limiting problem for the boundary value problem (1.5) as the period approaches zero.
Furthermore, by introducing a linear correction, we have developed an asymptotic
expansion which closely estimates the solution of the original boundary value problem.
Essentially, we have taken a nonlinear heterogeneous problem and decomposed it, in
a sense, into a nonlinear homogeneous problem and a linear heterogeneous problem.
Hence the homogenization approach to this problem gives insight into the behavior of
the solution while also providing an efficient computational technique. The corrector
term, although inhomogeneous, solves a linear problem and was therefore not difficult
to compute in our experiments. However, in higher dimensions or for very small scale
problems, one may want to homogenize the corrector term itself. This could perhaps
be done by solving a cell problem or looking at the tail behavior, as in [1] or [2].
In this paper we have used the language and terminology of galvanic corrosion, but
this analysis could also carry over to a more general class of elliptic problems with
nonlinear boundary conditions having periodic structure (assuming the appropriate
convexity conditions). Future work must address the continuity and boundedness
issues of the three dimensional problem; i.e., the lack of an applicable Orlicz estimate
must be resolved. Also of interest in future work would be the development of a better
corrector term, thereby improving the accuracy of the asymptotic approximation.
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